
School of Electronics and Computer Science
Faculty of Engineering, Science and Mathematics

UNIVERSITY OF SOUTHAMPTON

Robert D. Spanton

May 10, 2007

Wireless Sensor Network
Platform for Autonomous

Experimentation

Project supervisor: Klaus-Peter Zauner
Second examiner: Prof. James S. Wilkinson

A project report submitted for the award of MEng Electronic
Engineering

http://www.ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

by Robert D. Spanton

Developments in wireless sensor networks (WSNs) are strongly focused on
minimizing the power requirements of sensor nodes. As sensors with sig-
nificantly large resource requirements are introduced into WSN systems,
algorithms must be developed to maximise the information returned per
sensor reading. The integration of “lab on a chip” sensors into WSNs
widens the focus from power reduction to the reduction of sensor usage,
since the limited reagent resources available to such nodes will limit node
lifetime.

This project builds upon the prototype Gumsense sensor node to create
a platform that is suitable for the development and deployment of WSNs
that incorporate “autonomous experimentation” algorithms. Substantial
changes are made to the architecture of the Gumsense hardware platform
in pursuit of this new philosophy. The platform is upgraded so that data can
be sampled whilst remaining in a low power sleep state to minimise resource
usage. C and Tcl libraries are developed to enable the rapid development
of algorithms for the new Gumsense.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

Contents

Acknowledgements 4

1 Introduction 5

1.1 Previous Work . 9

1.2 Goals . 12

2 Technical Progress 13

2.1 Gumstix Sleep . 14

2.2 New Gumsense Design . 18

2.3 MSP430 Development . 23

2.4 Assembly . 31

2.5 Gumstix Software . 33

2.6 Powerdown . 39

3 Conclusions and Future Work 43

3.1 Evaluation . 44

3.2 Future Work . 45

Bibliography 46

A Gumsense Schematics 51

B MSP430 Software On CD

C Gumsense Kernel Driver On CD

D C Library On CD

E Tcl Library On CD

F Buildroot Patches On CD

3

Acknowledgements

I would like to thank my family, who have supported me throughout all this
insanity, and Klaus-Peter Zauner for being a fantastic project supervisor!

4

Chapter 1

Introduction

5

Chapter 1 Introduction 6

A wireless sensor network (WSN) is a distributed array of electronic devices,
each fitted with one or more sensors and a wireless transceiver [1, 2]. Most
WSNs contain an information sink that forms a bridge between the network
and the Internet, allowing near real-time access to sensor information.

WSN systems can be used to generate data for scientific research purposes,
whilst others can generate alerts in response to various events. Applications
of WSNs include seismic activity [3], animal habitat [4], traffic [5] and
pollutant monitoring. As WSN technology develops, an increasing number
of applications become feasible.

Typically, each device, or node, is powered by battery. However, sourcing
energy from the surrounding environment, perhaps through solar power [6]
or vibrations [7], is an active area of research.

The design of wireless sensor nodes and their interaction as a network is
primarily constrained by the tradeoff between power consumption and node
lifetime. Therefore, research focuses upon the part of the design that uses
the most energy. The energy used by this part is reduced either by replacing
or redesigning the part itself or by changing the way that the rest of the
system interacts with the part (e.g. by reducing the duration for which the
part is powered).

For this reason, the primary focus of WSN research has been reducing
the power consumption and temporal usage characteristics of node radios,
since the energy required to transmit, receive and listen [8] for data on the
radio link has been the most significant power drain. Clustering [9, 10, 11],
data aggregation [12, 13] and informed routing protocol design [14] can all
contribute to reductions in the energy used by WSN radio devices.

Much of this work regarding the reduction of radio usage uses the assump-
tion that the nodes of the WSN are densely packed within the monitored
environment [12]. Without significant technological improvement that re-
duce the size and power requirements of radio, computational and sensor
apparatus, dense packing is difficult to achieve. Furthermore, the cali-
bration of all of the sensing devices of a densely packed WSN presents
a significant challenge [3]. Also, the task of removing hundreds or thou-
sands of nodes from an area when a network is no longer needed brings
environmental concerns. For these reasons only sparsely distributed WSN
networks have been created in practice.

As the applications of WSNs become increasingly complex, the energy re-
quired to power sensors and process sensor data upon the WSN node be-
comes increasingly significant. Some WSNs are beginning to use CCD
and CMOS imaging devices to measure the properties of their environment
[15, 16], for example in order to count the number of eggs in a bird nestbox
[3]. The energy required by such imaging devices is significantly larger than
required by previously used sensors [16] as is the energy required to per-
form the image processing tasks necessary to extract measurements from

Chapter 1 Introduction 7

these images. These images must be processed within the nodes them-
selves, since the amount of energy to transmit such large quantities of data
is prohibitively large.

Wireless sensor nodes must be able to perform the processing of data from
image sensors at the same speed that it is sampled. The low power micro-
controllers that have previously been deployed within WSNs, such as on
the Mica Mote [17], must therefore be replaced, or accompanied by a mi-
croprocessor with greater computational ability.

This increase in the energy per sensing action logically leads to the develop-
ment of algorithms that maximise the information returned by the energy
invested in a sensor sample. However, it is important that reading accuracy
remains above a particular level. Using the distributed nature of the WSN,
it should be possible to use information from neighbouring node sensors to
reduce the number of sensor readings necessary to achieve a specified level
of accuracy about the sensor environment.

Furthermore, the development of microfluidic “lab on a chip” devices in-
troduces the possibility of integrating such components into wireless sensor
nodes. Many of these sensors would only have limited supplies of chem-
ical reagents available to them. This scarcity of reagents will need to be
incorporated into the algorithms implemented on WSN nodes.

The prediction of the information return from a sensor reading shares prop-
erties with the scientific research process. Measurements are performed
when values cannot be predicted to the desired level of accuracy. A system
of continuous hypothesis generation and testing can be created [18]. The
application of this concept to WSNs with high power sensing capabilities
should be fruitful. The term autonomous experimentation refers to the be-
haviour of an algorithm that intelligently takes into account previous sensor
readings, their predicted values and the uncertainty in future readings [19].

In order to research new applications for WSNs it is useful to have a flex-
ible development platform that can be used in a number of applications.
There have been many development platforms created by a number of re-
search groups, including LEAP [16], PASTA [5], the Mica platform [17] and
MoteLab [20].

A prototype of a sensor node that has a peak computing capability compa-
rable to a high end mobile phone, but adheres to stringent power require-
ments in sleep mode has been developed and built within ECS. This proto-
type, developed by Dr. Royan Ong, has been given the name “Gumsense”.
This prototype served as a starting point for this project and fundamental
changes to its architecture were made. Software libraries were developed
to enable the rapid development of algorithms for this new platform.

WSNs are often deployed in extreme environments, such as Glaciers [21],
and so the installation and maintenance of sensor nodes forms a significant

Chapter 1 Introduction 8

challenge. It is therefore important that nodes do not suffer from software
errors whilst they are deployed. Throughout this project, great care is
taken to ensure that the software provides a robust and reliable interface
to the Gumsense hardware.

Chapter 1 Introduction 9

1.1 Previous Work

A prototype wireless sensor platform was previously designed and con-
structed by Dr Royan Ong. This device connects to a Gumstix embedded
computer board, a product of Gumstix Inc, Portola Valley, California [22].
This extension card was given the name “Gumsense”, and is shown in fig-
ure 1.1.

The Gumstix is an embedded computer that runs the Linux kernel. The
Gumstix has relatively significant computational capability when compared
with the micro-controllers that the majority of previously constructed WSN
nodes have - such as the ATmega103 microcontroller employed on the Mica
platform [17], which is compared against the specification of the Gumstix
used in this project in table 1.1.

The Gumsense provides the following functionality:

• Two analogue inputs connected through inverting amplifiers with an
adjustable gain range from zero to -10.

• Two differential analogue inputs configured for connection to a resis-
tive sensor in a Wheatstone bridge.

• Current limited supply rails which can be enabled/disabled by the
Gumstix.

• Access to some of the Gumstix IO, including the serial ports.

All of the inputs and outputs of the Gumsense are exposed on 2.5mm pitch
pin headers (with the exception of the Gumstix USB) for easy access.

1.1.1 Architecture

The original Gumsense prototype has the architecture shown in figure 1.2.

Table 1.1: A comparison of the hardware of the ATmega103 micro-
controller [23], found on the Mica platform [17], against the Gumstix

Basic-XM [24].

Specification Gumstix ATmega103

Word Length 32-bit 8-bit
Clock Frequency 200 Mhz 6 Mhz

RAM 64 MB DRAM 4 kB SRAM
Non-volatile Storage 16 MB flash 128 kB flash

Chapter 1 Introduction 10

The Gumstix power is controlled using a DS1337 RTC, which is configured
using the I2C bus connected to the Gumstix. Similarly, the RTC also
controls the power delivered to the PIC microcontroller. By design, the
PIC can only be powered at the same time as the Gumstix.

Figure 1.1: The Gumsense prototype. Left: bottom view. Right: top
view.

Figure 1.2: Original Gumsense prototype architecture.

Chapter 1 Introduction 11

1.1.2 Analysis

This prototype functioned as desired, with a few minor exceptions. How-
ever, there are several things that can be improved:

• The device was initially created with the intention of using it with a
wireless network card attached to the Gumstix. However, the dimen-
sions of the Gumstix with wireless card attached had not been taken
into account when designing the Gumsense PCB, and so it was not
possible to use the wireless card.

• Since the analogue-to-digital converters are in the PIC microcon-
troller, and the PIC shares a power supply with the Gumstix, the
current design requires that both the Gumstix and PIC are powered
when an analogue input is sampled. This is quite wasteful of energy
if performing a single reading.

Chapter 1 Introduction 12

1.2 Goals

The aim of this project was to develop the hardware and software for a wire-
less sensor node with significant on-board computing capability, implement
a network of nodes and demonstrate its operation in a test scenario.

To achieve this aim the following goals were created:

• Improve the performance of the existing prototype.

• Develop software libraries and drivers to be used on the Gumstix to
interface with the Gumsense.

• Create scripting language bindings of the software library, to allow
for fast prototyping of algorithms.

• Develop autonomous experimentation algorithms for use upon the
Gumsense platform and demonstrate them on the platform.

• Document the hardware and software platform so that it can be used
for a variety of research purposes.

Chapter 2

Technical Progress

13

Chapter 2 Technical Progress 14

2.1 Gumstix Sleep

A method of reducing the power consumption of the Gumsense module
during periods of computational inactivity is for the microprocessor on the
Gumstix to enter sleep mode. However, no previous record of getting a
Gumstix to resume operation from sleep mode could be found.

2.1.1 Linux and Sleep Mode

The state of the software associated with the Gumstix sleep was examined.

It is necessary to compile the Linux kernel with the CONFIG PM configuration
option enabled (as stated in /kernel/power/Kconfig in the kernel source
tree [25]) in order for the sleep functionality to be present.

Upon a request for sleep mode, issued by writing the string “mem” to
/sys/power/mem, the kernel suspends execution of user-space processes,
puts the external memory into self-refresh mode and puts the processor
into sleep mode. Sleep mode is entered in /arch/arm/mach-pxa/sleep.S,
which is called by pxa cpu pm enter() (of /arch/arm/mach-pxa/pxa25x.c).

The Gumstix microprocessor, the PXA255 resumes execution upon a wake-
up event interrupt [26, p. 3-18]. This interrupt can be triggered by either a
GPIO pin or the internal RTC. The GPIOs that can be used, GPIO[15:0]
[26, p. 4-1], are not connected through to the Gumstix header [27]. There-
fore, the only method of waking the Gumstix from sleep is by using the
internal RTC of the processor.

2.1.2 Power Consumption

The performance benefits of using the Gumstix sleep mode were considered.
The PXA255 electrical specifications datasheet specifies that the supply
current in sleep mode is a maximum of 75µA [28, p. 25].

However, another part of the Gumstix is the SDRAM external to the
PXA255 processor. Through examination of the chip top-mark coding,
the full part number of the RAM ICs used on the Gumstix was found to
be the Micron Technology MT48LC16M16A2FG-75:D. The datasheet for this
device specified that the self-refresh current (the lowest power mode) is
a maximum of 2.5mA per device [29], thus rendering the PXA255 sleep
current insignificant.

Chapter 2 Technical Progress 15

Figure 2.1: Graph showing the power use of a typical sensor node.

2.1.3 Analysis

In order to obtain a figure to compare the sleep current to, the approximate
current consumption of the Gumstix whilst in active mode was measured
to be a maximum of 110mA, to an accuracy of ±5mA using a bench power
supply (a GW Instek GPC-1850D).

The relatively high power of the sleep mode of the Gumstix poses a problem
if the device is to have a reasonably long battery-powered lifetime. If one
considers an application of the Gumsense in which the Gumstix is subject
to a periodic sleep-resume cycle, as shown in figure 2.1, then the amount
of energy wasted in powering the Gumstix during sleep mode is:

Esusp = NPsusptinactive (2.1)

Where N is the number of sleep-resume cycles that the device performs,
Psusp is the power usage whilst in sleep mode and tinactive is the duration
of the inactive period. The time required to enter and exit sleep has been
regarded as insignificant.

If the Gumstix is turned off during periods of processor inactivity, then the
wasted energy is the energy required to boot1 the Gumstix software:

Eboot = NPactivetboot (2.2)

Where Pactive is the power usage whilst the CPU is active, and tboot is the
combined power-up and power-down time.

The condition of interest is when the energy wasted due to the sleep power
of the Gumstix is greater than the energy wasted booting the Gumstix:

Esusp > Eboot

Using equations 2.1 and 2.2:

Psusptinactive > Pactivetboot

1In this context, the term boot refers to the power-up and power-down processes.

Chapter 2 Technical Progress 16

Since the voltage rail supplied to the Gumstix is constant:

tinactive

tboot

>
Iactive

Isusp

The power-up time of the default Gumstix environment is 21 seconds [30],
but there have been reports of drastic reductions in this time to only 5
seconds [31]. The power-down time is of the order of 5 seconds. By taking
a boot time of 26 seconds, a sleep current of 5 mA and an active current
of 110 mA:

tinactive > 22tboot

⇒ tinactive > 572

Therefore, if the period of inactivity of the Gumstix is greater than 572
seconds (9 minutes 32 seconds), energy will be saved by turning the Gum-
stix off instead of sleeping during these periods. If, as discussed above, the
Gumstix power-up time is optimised to 5 seconds and the power-down time
is also 5 seconds, then the threshold inactivity period drops further to 220
seconds.

Both of these time periods indicate that switching the Gumstix power rail
off is beneficial in applications with a low frequency suspend-resume cycle
period.

In a situation in which the suspend-resume cycle period is variable, the
above analysis can be performed by replacing tinactive with its mean value
to achieve similar results.

Using these results, it was decided that the Gumsense must be able to
control the power rail of the Gumstix. This way, the Gumstix can use sleep
mode (if one were to use the inbuilt RTC as a trigger for a resume event)
in situations where the average period of inactivity is less than 22tboot and
power down during longer periods.

However, this inactivity period threshold may be further reduced if more
than one set of sampled data can be processed by the Gumstix during each
active period. If K samples can be sampled by a significantly lower power
device than the Gumstix, whilst the Gumstix is inactive, the inactivity
threshold becomes:

22tboot

K

Evidently, the number of samples that it is feasible to buffer is application
dependent. For example, the refresh currents of the memory required to
store images obtained from a CCD would play a significant part in deter-
mining the optimum number.

To allow for sample buffering, it is necessary to have a device upon the
Gumsense that performs the sampling and buffering independently of the
power state of the Gumstix. Therefore the task of triggering sampling

Chapter 2 Technical Progress 17

events should be moved from the Gumstix to the Gumsense microcontroller
in this new Gumsense revision. Similarly, the Gumsense microcontroller
should control the power rails delivered to off board sensing devices.

Chapter 2 Technical Progress 18

Table 2.1: The sleep currents of various microcontrollers. The “timer
sleep current” is the current required for all peripherals except for the
timer peripheral and crystal oscillator operating at 32768 Hz. All values
are for room temperature operation (25◦C) with a 3.3 V supply rail.

Compiled from [32, 33, 34, 35].

Device Sleep Current Timer Sleep Current
PIC16LF876A 6.3 µA 11.3 µA
tinyAVR ATtiny28L <1 µA 9 µA
MSP430F169 0.2 µA ∼3.3 µA
LPC2148 40 µA unknown (>40 µA)

2.2 New Gumsense Design

2.2.1 Microcontroller Investigation

Since the new design of the Gumsense would place different demands upon
the microcontroller than on the prototype, alternatives to the PIC16F876A
were considered.

The main factors affecting the choice of microcontroller were the sleep cur-
rent and the presence of I2C and ADC peripherals. Table 2.1 shows a com-
parison of the sleep currents of a selection of microcontrollers that were
considered for the project. It is evident that the MSP430 uses significantly
less power than the other devices.

The time-keeping operation of the DS1337 RTC can be moved into the soft-
ware of the MSP430F169. This involves an increase in the operating current
of the system, since the time-keeping current of the DS1337 is 1.5 µA [36],
whilst the MSP430F169 consumes 3.3 µA. However, this decision is well
justified because the architecture of the system is simplified. The MSP430
does not have to interface with the DS1337 to schedule wake-ups. Also the
MSP430 will not need to store readings, which are pending transfer to the
Gumstix, in non-volatile memory (a process which consumes energy).

The architecture for the new Gumsense design is shown in figure 2.2.

2.2.2 Schematic Design

Using the new Gumsense architecture design, the schematic for the new
PCB was put together in the EAGLE Layout Editor from Cadsoft, Delray
Beach, Florida [37]. The schematics are shown in appendix A, and the bill
of materials is shown in table A.1.

Chapter 2 Technical Progress 19

Figure 2.2: Enhanced Gumsense architecture.

A list of the headers on the Gumsense can be found in table 2.2. A number
of these headers, including JP4, JP7 and JP13, have been implemented to
allow for future expansion of the MSP430 software. In particular, JP13
provides an interface to the “spare” serial interface of the MSP430. In the
future, this could be used to interface the MSP430 directly with a PC, and
thus allow for “standalone” operation of the Gumsense without an attached
Gumstix. This would allow for heterogeneous WSN configurations to be
developed.

A set of additional IO connections between the Gumstix and MSP430 were
created, namely MSP430 0 and MSP430 3. Originally there were 4 connec-
tions. Two of these had to be removed in order to simplify PCB routing.
These connections were installed to allow for future development.

The design of the switch-mode power supply for the Gumstix was reviewed
and modified according to requirements. The output voltage of the switch-
mode supply on the original Gumsense had been 5.8 V. With the change
in Gumsense architecture, this needed changing to 5 V. Therefore, the
feedback resistor values of the MAX1685 were modified accordingly. With
this new output voltage a smaller output capacitor and inductor could be
used.

The differential amplifier design was reviewed with reference to the AD623
datasheet [38]. A fault in the use of the AD623 in the original Gumsense
was found; the “REF” pin of the AD623 was connected to ground. The
AD623 datasheet states that [38, p. 11]:

Chapter 2 Technical Progress 20

Table 2.2: The headers on the Gumsense.

Designator Description

JP1 MSP430 4-wire JTAG
JP2 Differential Amplifier 1 Input
JP3 Differential Amplifier 2 Input
JP4 Gumstix IO
JP5 Inverting Amplifier 1 Input
JP6 Inverting Amplifier 2 Input
JP7 MSP430 IO
JP8 Gumstix FF Asynchronous Serial Port (Default for serial console)
JP9 Controlled 3.3V Power Rails
JP10 Controlled 5V Power Rails
JP11 Gumstix HW Asynchronous Serial Port
JP12 I2C and Gumstix PWM Output
JP13 MSP430 Asynchronous Serial
JP14 Gumstix serial interface for audio
JP15 Analogue inputs without interface amplifiers

The output signal appears as the voltage difference between the
Output pin and the externally applied voltage on the REF input.
For a ground referenced output, REF should be grounded.

In the original Gumsense, the differential amplifier output was “ground
referenced”, meaning that the output voltage was configured to swing about
ground. Since the AD623 was not supplied with a negative rail, this would
prevent the amplifier from detecting input voltage swings in one direction.
To correct this problem, the REF pin was connected to a potential divider
providing half the supply rails.

A distributor of the MAX4477 dual op-amp could not be found, and so the
OPA2335D dual op-amp was used as a replacement. The LDO regulator
chosen to regulate the analogue supply rail is the MAX8881. This regulator
has a shutdown pin, which has been connected to an MSP430 general-
purpose IO pin. The MAX8881 comes in several variants [39] with different
preset output voltages. A 5V version was also added to the Gumsense so
that 5V off-board devices could be powered. The shutdown pin of this
regulator was also connected to an MSP430 pin.

2.2.3 PCB Design

The PCB was routed using the EAGLE Layout editor [37] autorouter. An
initial attempt at manual routing was made, but this would have taken

Chapter 2 Technical Progress 21

Figure 2.3: The top and bottom layer masks of the Gumsense PCB.
Actual dimensions are 95 by 47 mm.

much more time than the autorouting procedure (the autorouting process
took approximately an hour, whilst about 75% of the airwires were routed
in around ten hours). The resultant board masks are shown in figure 2.3
and diagrams of component placement are shown in figure 2.4.

Chapter 2 Technical Progress 22

Figure 2.4: The component placements on the top and bottom of the
Gumsense PCB (95 by 47 mm).

Chapter 2 Technical Progress 23

Figure 2.5: PCB layout for QFP64 to DIP64 adapter.

2.3 MSP430 Development

2.3.1 MSP430 Selection

The MSP430 micro-controller selected to be used on the Gumsense is the
MSP430F169. It was chosen because it provides a large number of GPIO
pins, as well as an I2C slave device and a 12-bit, 8-channel ADC peripheral.

The MSP430F169 is in a 64 pin Quad Flat Pack (QFP) package. In order to
prototype the Gumsense design, an adapter board was constructed to allow
a MSP430F169 to be plugged into breadboard. This PCB was designed
using the EAGLE Layout Editor from CadSoft, Delray Beach, Florida [37].
Figure 2.5 shows the PCB design and figure 2.6 shows a picture of the
soldered device. After manufacturing the PCB, it was discovered that the
spacing of the breadboard holes across two attached breadboards was a
multiple of 50 mil, rather than 100 mil. This meant that the wires on
either side of the adapter were at an angle, and the module was relatively
challenging to remove from the breadboard.

2.3.2 Toolchain

The mspgcc [40] toolchain was used to compile the software for the MSP430.
mspgcc is still under development, and so some experimentation was nec-
essary in order to get a working version. Binutils version 2.16 was used
with GCC 3.2.3. Programming of the MSP430 was performed through an
MSP430 JTAG adapter.

2.3.3 Software Specification

The specification for the MSP430 software is as follows:

• Sample analogue inputs at times specified by the Gumstix.

• Enable and disable the Gumstix power rail at times given by the
Gumstix.

Chapter 2 Technical Progress 24

Figure 2.6: The MSP430F169 mounted on the PCB for prototyping.
The PCB is pictured plugged into protoboard.

• Enable and disable peripheral power rails at times specified by the
Gumstix.

• Provide access, through an I2C bus, to parameters that configure
the operation of the software and to data that has been collected by
sampling inputs.

The MSP430 has several power modes. Two of these modes have been
used:

LPM3 (Low Power Mode 3), in which the CPU core executes no instruc-
tions. Various device peripherals remain active - including the timer
and USART (used for I2C) peripherals.

AM (Active Mode) The core is clocked and executes instructions.

In the event of an interrupt, the MSP430 interrupt mechanism allows the
device to transition from LPM3 to AM. After this transition, the device
executes the relevant interrupt service routine (ISR). Upon completion of
ISR execution, the device enters the power state it was in prior to ISR
execution.

This ability of the MSP430 to automatically transition between power
states combined with the event-driven nature of the Gumsense MSP430
software lends itself to placing the main functional software in the inter-
rupt service routines.

The current revision of the MSP430 software is included in appendix B.

Chapter 2 Technical Progress 25

2.3.4 Time

The software keeps track of the time using a 32.768 KHz crystal (chosen
because a division of the frequency by 215 gives a signal of 1 Hz) as the
clock for the MSP430 ‘timer A’ internal peripheral. The timer A peripheral
has a 16-bit counter register. Therefore the timer A peripheral can time
a maximum of 2 seconds without CPU core activity. The MSP430 timer
peripheral can toggle the value of an output pin when a value is reached.
Timer A was configured so an output pin would toggle at a rate of 1 Hz.
This output was connected to the clock input of the ’timer B’ peripheral,
which also contained a 16-bit counter register. This increased the period
of time that could be measured without waking the microprocessor core to
216 seconds.

This period can be extended by using the timer peripheral clock dividers.
However, sleeping for such large times is incredibly unlikely to happen.

2.3.5 Scheduling

A system has been created in which the MSP430 maintains a list of recur-
ring jobs, each of which has the following properties:

• A set of analogue inputs to sample, in the form of the bit mask
channels.

• A set of power rails which must be powered during sampling, power mask.

• The sampling period in seconds, interval.

• The time between power-up and analogue-to-digital conversion, power up time.

This information is stored in a 16-entry array of C structures with the
format shown in figure 2.7. 16 entries were created so that the logging of
data was simpler, and this number was deemed to be sufficient, since it
would allow 2 jobs per ADC channel. This job table is modified via the
I2C bus by the Gumstix (see section 2.5).

The job scheduling software is mainly implemented in the timer B interrupt
routine (in timer-b.c). This routine invokes two scheduling operations:
schedule do jobs() and schedule next wakeup(). schedule do jobs()

executes the jobs which need to be executed at the current time. schedule next wakeup()

determines the next time at which the CPU must enter active mode.

Whilst implementing the job scheduling routines, a test job with a period of
one second was hard-coded into the firmware. For operational verification,
the code was modified so that upon execution of a job, the value of an
output pin would be toggled. Using this method of debugging, an error

Chapter 2 Technical Progress 26

typedef struct

{

time_t interval , next_time;

uint8_t power_up_time;

uint8_t power_mask;

uint8_t channels;

uint8_t powered :1;

uint8_t adc_wait :1;

} job_t;

Figure 2.7: The job information table structure

was discovered whereby the job execution period was one second longer
than desired. It was later discovered that the timer B interrupt occurs one
timer clock cycle after the specified timer value has been reached. The
frequency of the clock generated by timer A was doubled to 2 Hz. The
target timer B value was in turn modified so that it would be reached half
a second prior to the time of the desired interrupt. The timer B interrupt
thus occurred at the desired time.

2.3.6 I2C Routines

To multiplex the necessary functions through same I2C bus address, a com-
mand/register system similar to that specified by the SMBus specification
[41] was used. The Linux kernel provides an API to SMBus compatible
devices, and so it was possible to use this to interface with the MSP430.
The register read and write command sequences are shown in figure .

The MSP430 I2C peripheral driver is implemented in i2c.c ,which can be
found in appendix B. The specifics of this peripheral were hidden from the
routines that produce and process register values through the creation of
an abstract interface to read, write and size functions for each register, in
i2c reg.c. Pointers to the register access functions are stored in the array
dev regs. This greatly simplified the implementation and debugging of the
I2C code.

A description follows of the functionality of each of the I2C registers that
were implemented:

0: Identity This is a read-only register that always reads as 0x0100AB.
This is useful for automatically identifying the Gumsense from the
Gumstix software.

1: Time This is 4-byte read-write register. The MSP430 increments its
value every second. Perhaps the most sensible value to be stored here
is the Unix timestamp (the number of seconds since the Unix epoch).
This time is used to control all other operations within the MSP430.

Chapter 2 Technical Progress 27

Figure 2.8: The sequence of I2C events for register read and write
operations.

2: Job Reading from this register gives all 16 entries of the current job ta-
ble. The format of this data is described in lines 114-120 of i2c reg.c,
which can be found in appendix B. Writing to the register overwrites
an existing entry in the table. The data written to the register is
prefixed with the number of the job entry to overwrite. The format
of the write data is show in lines 143-150 of i2c reg.c.

3: Job Data Size This is a read-only register that gives the number of
samples available.

4: Job Data The job data can be read in blocks of 32 bytes from this reg-
ister. The block number should be set by writing to the job read cursor
register. The read cursor is automatically-advanced when a block is
read from this register.

Writing the “magic” number 0x203E to this register causes the data
that has been read from this register to be cleared from the internal
buffers.

5: Gumstix Power Writing to this register causes the Gumstix power
to be disabled. A “magic” value of 0x78B5 must be written to this
register for the power to be disabled. The “magic” value has been
implemented so that it is more unlikely that the power will be disabled
accidentally.

Chapter 2 Technical Progress 28

6: Gumstix Wake Time This stores a 4-byte time value that is both
readable and writable. The Gumstix power will be enabled when
the time stored by the MSP430 is equal to the value stored in this
register.

7: Job Execution Mask This is a single byte read-write register. If the
value of this register is non-zero then jobs are executed. If it is zero
then no jobs are executed (with the exception of powering up the
Gumstix).

8: Job Data CRC This register is currently partially implemented. It
was envisioned that the sampled data would be CRC check-summed
on the MSP430 and that it would be possible to read this value
through the register.

9: Job Read Cursor This is a 2-byte read-write register that contains
the number of the data block to be read. In normal operation, it is
only necessary to zero this register before reading sample data from
the job data register.

10: Job Data Size/Time This is a read-only register that contains both
the number of samples available and the time of the last sample.

The MSP430 I2C lines were connected to a Gumstix via a Gumstix “console-
hw” expansion board. Section 2.5 discusses the Gumstix I2C software in
detail.

Whilst debugging the I2C routines, a bug in the MSP430 compiler being
used was found. The machine code generated by the compiler when it
processed a switch on a volatile variable incorrectly accessed that variable
twice. Figure 2.9 shows the smallest amount of code required to replicate
this bug. A disassembly of the relevant section of machine code is shown
in figure 2.10. The listing clearly shows that the volatile value is accessed
twice, yet assumes that the value stays constant. This was a problem,
since the I2C interrupt vector register, I2CIV, (which stores the type of
the highest priority I2C interrupt) value changes upon access [42, p. 15-
19]. Therefore, a workaround was used where the value of the register was
copied into a local variable, which was then used as the parameter for the
switch statement.

2.3.7 Data Logging

The MSP430 software samples data and stores it in an array in RAM. Two
methods of formatting this data were considered. In order to maintain a
time-value mapping for each ADC channel, the absolute time (4 bytes), the
channel number (3 bits) and the sample value (12 bits) could be stored for
each sample. This would be quite inefficient, as it would contain a large

Chapter 2 Technical Progress 29

volatile int test;

int main(void)

{

int i;

switch(test)

{

case 0: i = 1; break;

case 1: i = 2; break;

case 2: i = 3; break;

case 3: i = 4; break;

case 4: i = 5; break;

case 5: i = 6; break;

case 6: i = 7; break;

case 7: i = 8; break;

}

}

Figure 2.9: Smallest amount of code that demonstrates the “switch
on volatile” compiler bug.

1 0000 fc40 <main >:

2 fc40: 31 40 7e 02 mov #638, r1 ;#0 x027e

3 fc44: 04 41 mov r1 , r4 ;

4 fc46: b2 92 00 02 cmp #8, &0x0200 ;r2 As==11

5 fc4a: 2a 2c jc $+86 ;abs 0xfca0

6 fc4c: 1f 42 00 02 mov &0x0200 ,r15 ;0x0200

7 fc50: 0f 5f rla r15 ;

8 fc52: 3f 50 5a fc add #-934, r15 ;#0 xfc5a

9 fc56: 2f 4f mov @r15 , r15 ;

10 fc58: 00 4f br r15 ;

Figure 2.10: Portion of the disassembly of the code in listing 2.9.
Memory address location 0x200 is accessed twice (lines 4 and 6).

amount of redundant information, since the samples are periodic and their
period is stored in the job table. The array of samples was therefore imple-
mented so that it would only contain the sample values and the channels
that those samples represent. When the Gumstix reads the sample table
out of the MSP430, it recreates the mapping of samples to absolute time
using the time of the last sample recorded provided by the MSP430.

Initially, job execution (i.e. logging) had to be suspended whilst sample
data was read out of the MSP430. However, this proved to be inconvenient,
as samples could be missed if it took too long to read the data from the
MSP430. Therefore, the sample logging and access system was modified
to treat the sample buffer as circular. The routines responsible for logging
data would add data to the current “tail” of the buffer, which would wrap
round from the end to the beginning when necessary. This meant that
space in the buffer could be freed by the read routines whilst the logging
routines could continue to write to the buffer whilst the data was still being
read. The I2C operation that would clear all data was adapted so that it
would clear only the data that had been read from the buffer.

Chapter 2 Technical Progress 30

2.3.8 Continuous Time Measurement

The time stored in the MSP430 is updated every time a scheduled job
executes, in the timer B interrupt service routine. If the current time was
read from the Gumsense via I2C at some point between these time updates,
only the time at which the last job executed would be read.

By modifying the I2C time register read routine (i2cr time) to use the
current value stored in the timer B counter combined with the time stored
by the last interrupt, it was hoped that this would allow reading of the
correct time at any time. With the use of a test program that read the
time from the Gumsense every tenth of a second, it was discovered that this
generated some erroneous values. The output of this program with a single
job with a 10 second period was . . . 259, 259, 260, 260, 260, 260, 270, 270,
270, 270, 270, 261, 261 A job was executed when the time transitioned
from 260 to 261, which is when the value read from the Gumsense moved
from 260 to 270. It is evident from this data that there is a period of at
least 0.5 seconds in which the value read from the MSP430 is out by 10
seconds.

After further examination of the MSP430x1xx User Guide [42, p. 230], it
was discovered that the service routine of the timer B interrupt TBCCR0 is
executed immediately when the timer reaches the requested value. There-
fore during the 0.5 seconds following this interrupt, the addition of the
timer register to the time variable will yield the observed erroneous value.

The timer B peripheral has a second interrupt that is triggered one timer
B clock cycle later than TBCCR0, called TBIV. By switching to use this
interrupt the erroneous time readings were eliminated.

Chapter 2 Technical Progress 31

2.4 Assembly

A set of new Gumsense PCBs was kindly manufactured by the Cambridge
Circuit Company Ltd, Cambridge, UK. The components were subsequently
soldered onto one of them using a hot-air reflow soldering tool. The different
parts of the PCB were tested as the device was assembled.

During assembly, it was discovered that an error had been made in pur-
chasing the 1 µF 0603 capacitors. So, 4.7 µF capacitors were used in their
place. This meant that the maximum supply voltage that could be applied
to the Gumsense was 6 V, because the substitute capacitors were not rated
to the 16 V that the intended ones were.

There were two errors that required PCB net modification. The ground
connection to the diode and capacitor on the output of the switch-mode
supply was not present. This was fixed by placing a short piece of wire
between a nearby grounded via and the terminal of the capacitor. The
second fault was that the output of the MSP430 supply 3.3 V regulator was
connected straight to the MSP430, rather than going through the dropout
diode. This was fixed by cutting some tracks and implementing the correct
connectivity using three short pieces of wire. The two nets were connected
in the netlist, yet the schematic editor did not provide any visual indication
of this - and so the error was not discovered until testing took place.

The USB connection to the Gumstix was found not to function. This was
because the USB had been assumed to work on the original Gumsense.
However, this was not the case. The Gumstix website [22] provided no
specific documentation on how to use the USB connections of the Gumstix.
By examining the schematic of the conshole-hw board [43], it was discovered
that an additional chip and Gumstix IO line were required to implement
the software controlled 5V pull-up that the USB specification requires [44,
p. 120]. There was not sufficient time remaining to produce a second PCB
revision with these modifications, and so this is left for future work.

It was not possible to source any MAX4794 current switches, and so these
were not implemented upon the PCB. However, it was realised that the qui-
escent current of these devices would drastically increase the sleep current
of the device. If a p-channel MOSFET was placed between the MAX4794
supply pins and the supply rail, then the MSP430 would be able to com-
pletely remove this standby current (when none of the rails were being
used).

Figure 2.11 shows the new assembled Gumsense PCB. Figure 2.12 shows
the Gumsense with the Gumstix attached and also with the Compact Flash
WiFi card attached.

Chapter 2 Technical Progress 32

Figure 2.11: The new Gumsense PCB top (left) and bottom (right).
Actual dimensions are 95 by 47 mm.

Figure 2.12: The assembled Gumsense with Gumstix attached (top)
and with Gumstix and wireless card attached (bottom).

Chapter 2 Technical Progress 33

2.5 Gumstix Software

There are three main components of the Gumstix software stack:

Linux [25] The Gumstix uses the Linux kernel compiled for ARM micro-
processors. Version 2.6.18 was used initially and 2.6.20 was used when
the Gumstix Buildroot changed to use it.

uClibc 0.9.28 [45] This is a C library designed for use in embedded Linux
systems. It is designed for systems with limited memory.

BusyBox 1.1.2 This provides a set of common shell commands with a
small memory footprint.

The Gumstix project (www.gumstix.org) provides a set of scripts, col-
lectively called Buildroot, which automate the process of configuring and
building an image of the Gumstix file system. For this project, the Gum-
stix Buildroot subversion repository was cloned into a Git (http://git.
or.cz/) repository2. By cloning into a Git repository, changes made “up-
stream” by the Gumstix project could be integrated with the Gumsense
specific changes with ease. Changes that were made to Buildroot that
could be useful to the rest of the community were submitted upstream;
however little response was observed.

2.5.1 C Library

A C library was written for use on the Gumstix. This would provide a layer
of abstraction between the Gumsense and application software.

It was necessary for the C library to interface with the Gumsense from
userspace. Enabling the Linux CONFIG I2C CHARDEV configuration option
creates the device node /dev/i2c-0. Using the i2c-dev.h header file, from
the lm-sensors hardware monitoring project (http://www.lm-sensors.
org/).

The library uses an opaque structure, struct gum t, to represent the con-
nection to the Gumsense from the application that is using the library.
The gumsense open() function should be called by the client application
to initialise a new Gumsense connection. The C library provides a num-
ber of functions for performing the various operations that the Gumsense
provides. These functions can only be used once the connection has been
established. A set of functions is provided for each of the I2C registers.
The mapping is shown in table 2.3.

2The Gumsense Buildroot Git repository is available at http://users.ecs.soton.
ac.uk/∼rds204/gumsense and on the project CD.

www.gumstix.org
http://git.or.cz/
http://git.or.cz/
http://www.lm-sensors.org/
http://www.lm-sensors.org/
http://users.ecs.soton.ac.uk/~rds204/gumsense
http://users.ecs.soton.ac.uk/~rds204/gumsense

Chapter 2 Technical Progress 34

T
a
b
l
e

2
.3

:
M

ap
pi

ng
of

C
fu

nc
ti

on
s

to
I2

C
re

gi
st

er
s.

R
e
g
is

te
r

R
e
a
d

F
u
n
ct

io
n

W
ri

te
F
u
n
ct

io
n

Id
en

ti
ty

g
u
m
s
e
n
s
e
c
h
e
c
k
i
d
e
n
t
i
t
y
(
)

-
T

im
e

g
u
m
s
e
n
s
e
t
i
m
e
g
e
t
(
)

g
u
m
s
e
n
s
e
t
i
m
e
s
e
t
(
)

J
ob

T
ab

le
g
u
m
s
e
n
s
e
r
e
a
d
j
o
b
t
a
b
l
e
(
)

g
u
m
s
e
n
s
e
j
o
b
w
r
i
t
e
(
)

J
ob

D
at

a
S
iz

e
g
u
m
s
e
n
s
e
n
u
m
r
e
a
d
i
n
g
s
(
)

-
J
ob

D
at

a
g
u
m
s
e
n
s
e
r
e
a
d
d
a
t
a
b
l
o
c
k
(
)

an
d
g
u
m
s
e
n
s
e
r
e
a
d
d
a
t
a
(
)

-
G

u
m

st
ix

P
ow

er
-

N
ot

im
p
le

m
en

te
d

a

G
u
m

st
ix

W
ak

e
T

im
e

g
u
m
s
e
n
s
e
w
a
k
e
g
e
t
(
)

g
u
m
s
e
n
s
e
w
a
k
e
s
e
t
(
)

J
ob

E
x
ec

u
ti

on
M

as
k

g
u
m
s
e
n
s
e
e
x
e
c
m
a
s
k
g
e
t
(
)

g
u
m
s
e
n
s
e
e
x
e
c
m
a
s
k
s
e
t
(
)

J
ob

R
ea

d
C

u
rs

or
g
u
m
s
e
n
s
e
j
o
b
d
a
t
a
c
u
r
s
o
r
g
e
t
(
)

g
u
m
s
e
n
s
e
j
o
b
c
u
r
s
o
r
s
e
e
k
(
)

J
ob

D
at

a
S
iz

e/
T

im
e

g
u
m
s
e
n
s
e
n
u
m
r
e
a
d
i
n
g
s
t
i
m
e
(
)

-

a
T

he
C

lib
ra

ry
m

us
t
ne

ve
r
di

sa
bl

e
th

e
G

um
st

ix
po

w
er

;t
hi

s
is

do
ne

fr
om

th
e

sh
ut

do
w

n
ro

ut
in

es
of

th
e

G
um

se
ns

e
ke

rn
el

dr
iv

er
.

Chapter 2 Technical Progress 35

2.5.1.1 Callback Mechanism

As indicated in table 2.3, two functions are implemented for reading sam-
pled data from the Gumsense. The first of these, gumsense read data block(),
reads a single block of sample data from the Gumsense. Whilst writing util-
ities that made use of this function, it became clear that this interface was
cumbersome to use due to the number of loops that had to be implemented,
and the lack of translation of the Gumsense response from an array of bytes
into an array of samples.

For these reasons the second method was implemented, namely gumsense read data().
This function would read all of the available data from the Gumsense and
call a callback function once per sample. The callback function is pro-
vided with a gum reading t structure, containing the channel number and
sample value. A second callback function would be called once with the
number of samples and a pointer that would be shared with all the sample
callback calls. This method greatly reduced the memory allocation over-
head, avoided the need to append data blocks together to process data, and
moved code that would almost certainly be duplicated in applications that
use the library into the library itself.

2.5.1.2 Testing of the C library

Several simple programs were written to test the interaction of the C library
with the Gumsense. These are:

gum-dump This reads and displays all of sampled data from Gumsense.
It uses the callback method of retrieving the data.

gum-jobs This reads and displays the contents of the job table.

gum-settime This reads the current time from the Gumsense and sets
the system time to it. This is useful for loading the time into the
Gumstix on boot.

All of these programs can be found in the project subversion repository.

An error in the MSP430 firmware was discovered using the gum-dump pro-
gram. The MSP430 would report that it had a certain number of sam-
ples available for transfer, yet would only provide half that number to
the gum-dump utility. After analysing the i2cr job data function, it was
eventually realised that the fault was because the read cursor was being ad-
vanced by twice the amount it should be at the end of every data block. The
constant MAX BLOCK SIZE had been added to the read cursor every time.
This constant was the maximum desired I2C transaction size in bytes. The
variable read cursor stores the offset within the sample buffer of the first

Chapter 2 Technical Progress 36

sample of the next block to be read. This difference in units between the
read cursor and the block size constant was the reason for this error not
being noticed whilst writing the MSP430 firmware.

2.5.2 Tcl Library

A Gumsense Tcl library was written that made use of the Gumsense C
library. Although Tcl, an interpreted scripting language, may not be the
most energy efficient programming language that could be used, it certainly
presents a clear, simple and fast method of developing and researching WSN
algorithms. Furthermore, it could potentially ease the process of migrat-
ing algorithm platform - for example, to the Gumsense from a simulated
environment on a PC.

When the compilation of Tcl was enabled in the Buildroot configuration
file, Tcl failed to build. This was fixed by modifying Buildroot to build
Tcl 8.4.14 rather than 8.4.12 (by altering the values of TCL EXTRACTED and
TCL TARBALL appropriately in package/tcl/tcl.mk of Buildroot). Fur-
thermore, the Tcl build scripts were modified so that the Tcl install scripts
would only run when required (previously they ran every time make was in-
voked in Buildroot). The patch for these changes can be found in tcl-build-fix.patch

in appendix F.

The Tcl library was written in C, compiled into a shared library for loading
by the Tcl interpreter. Appendix E contains the source code of this library.
Similar functionality to the C library was created, however a procedure
name change was made so that it would be easier to distinguish whether
one was referring to a function from the C or Tcl library.

Figure 2.13 shows an example of the usage of the Gumsense Tcl library.

It was necessary to translate the C structure that represents a sampling
job into some form of Tcl structure. Ideally, the Tcl procedure to read
the table of jobs would return an associative array containing the various
settings that a job has. However, Tcl provides no methods for creating
arrays from C extensions. Therefore the C routines were written to return
a list containing the job attributes. The offset of the data within the list
related to its value. Table 2.4 lists the indices of these values.

This interface was evidently unintuitive to use, since it involves the use
of arbitrary indices. A solution, suggested by by Klaus-Peter Zauner, was
that the Tcl C extension function could return a list interleaved with prop-
erty names and values. This list could then be used by the Tcl array get

procedure to create an associative array with an intuitive name-value map-
ping. This solution was not implemented from within the Tcl C extension,
as time was of the essence. The simple Tcl routine shown in figure 2.14 can
be used to translate a job represented as a list into an array.

Chapter 2 Technical Progress 37

#!/ usr/bin/tclsh8.4

lappend auto_path .

package require gumsense

gumsense::open

set data [gumsense::read_readings]

gumsense::clear_readings

set t [lindex $data 0]

set readings [lindex $data 1]

set num_readings [llength $readings]

set time_off [expr {$t - $num_readings }]

set n 0

puts "$num_readings readings read"

set values [list]

set channels [list]

set times [list]

foreach i $readings {

lappend values [lindex $i 1]

lappend channels [lindex $i 0]

lappend times [expr {$time_off + $n}]

set n [expr {$n + 1}]

}

set valstr [regsub -all " " $values +]

set chanstr [regsub -all " " $channels +]

set timestr [regsub -all " " $times +]

set getstr data=$valstr&channels=$chanstr×=$timestr

puts $getstr

#Log data to remote host

exec wget -q -O /dev/null http: //192 .168.3.1 /~rob/gum/log.php?$getstr

gumsense::set_wake_time [expr {[gumsense::read_time] + 300}]

exec /sbin/poweroff

Figure 2.13: An example showing the use of the Tcl library.

Table 2.4: The indices of the job attributes within a Tcl list represent-
ing a job.

Index Description
0 Interval
1 Next Time
2 Power-up Time
3 Power Mask
4 Channels

Chapter 2 Technical Progress 38

proc job-to-array { job } {

set a [linsert $job 4 channels]

set a [linsert $a 3 power_mask]

set a [linsert $a 2 power_up_time]

set a [linsert $a 1 next_time]

set a [linsert $a 0 interval]

array set jobarr $a

}

Figure 2.14: Translating a list of job properties into the array jobarr.

In order to integrate the Gumsense Tcl library into the Tcl package sys-
tem, it was necessary to alter the Buildroot scripts that configure and
install Tcl so that the package management scripts would be installed cor-
rectly. Also, the way that the Tcl Buildroot makefile invoked the Tcl
configure script was altered so that the paths in which the Tcl package
system looked for package files was correct. These changes can be found in
tcl-package-build-fix.patch.

Chapter 2 Technical Progress 39

Table 2.5: Signals that can be sent to the init process.

Signal Function
SIGUSR1 Halt
SIGUSR2 Power Off
SIGTERM Reboot

2.6 Powerdown

The 5V rail delivered to the Gumstix must be switched off when the Gum-
stix has finished all of its processing. Of course, it is necessary for the pro-
grams running on the Gumstix to finalise their operations correctly prior
to the rail being removed. The best place to hook into this procedure is
where the power would normally be disabled on any other Linux system.
A short investigation was conducted to discover how to integrate this into
the software stack.

It was known that by running /sbin/poweroff the procedure to power
down the system would be initiated. The poweroff program is part of
the BusyBox set of tools, and causes the halt main() function found in
init/halt.c of the BusyBox code to be executed. This function is also
executed when /sbin/reboot or /sbin/halt is invoked. The halt main()

function performs two different functions, depending on whether BusyBox
is configured to provide the init process or not. In the case of the Gumstix,
BusyBox provides init. halt main() sends a signal to the init process.
The signal that is sent depends on the requested operation. Table 2.5 shows
the mapping of functionality to different signals.

When init receives the SIGUSR2 signal, it enters the halt signal() routine
found in init/init.c of the BusyBox source. This function sleeps for 2
seconds before continuing to call init reboot(). The purpose of the 2
second pause is to allow for any data resident in the serial console output
buffer to reach its destination before the power is switched off. The pause
was removed in the Gumsense buildroot tree in order to reduce the amount
of energy consumed during Gumsense shutdown.

The init reboot() function forks the init process (for reasons that are
unimportant), and one of the resultant processes calls reboot(), which
through the C library (uClibc) performs the reboot syscall. Linux’s sys reboot()

function is invoked by this. If the pm power off function pointer is not
NULL, then it is eventually called. If it is NULL, then the poweroff se-
quence is converted into a halt sequence. A halt results in the system
entering an infinite loop rather than powering down. An overview of this
sequence of calls is provided in figure 2.15.

Chapter 2 Technical Progress 40

halt_signal()
busybox-1.2.2/init/init.c

Sleep for 2 seconds

init_reboot(RB_POWER_OFF)
busybox-1.2.2/init/init.c

Fork init

reboot()
uClibc/libc/sysdeps/linux/common/reboot.c

sys_reboot(-,-,LINUX_REBOOT_CMD_POWER_OFF)
linux-2.6.20gum/kernel.sys.c

syscall

pm_power_off == NULL?

Convert to a halt

No

kernel_power_off()
linux-2.6.20gum/kernel/sys.c

Yes

kernel_shutdown_prepare(SYSTEM_POWER_OFF)
linux-2.6.20gum/kernel/sys.c

machine_power_off()
linux-2.6.20gum/arch/arm/kernel/process.c

pm_power_off()
Not defined for Gumstix

Wait indefinitely

Figure 2.15: The sequence of function calls that are made by BusyBox
init when approaching power-down. Functions are shown in rectangles

and actions are shown in ellipses.

Chapter 2 Technical Progress 41

As a result of this investigation, it was decided that the best method of
hooking into the poweroff code was to set the pm power off function pointer
to refer to a function that sends the command to the Gumsense to turn off
the Gumstix power. If pm power off is set to be non-NULL then, as per
figure 2.15, it is called after driver finalisation.

In order to send the power-down command to the Gumsense, a pointer to
an i2c client structure is required. The only practical method of getting
a pointer to an i2c client structure is by implementing an I2C chip kernel
driver for the Gumsense.

2.6.1 Kernel Driver

Using the information regarding writing drivers that are part of the I2C
subsystem in Documentation/i2c of the Linux sources, and chapter 2 of
[46] for information on how to write a kernel module, a kernel driver was
written.

Appendix C contains the source code of the kernel module. This file was
placed in the drivers/i2c/chips directory of the Linux source code. Mod-
ifications were made to the makefile and configuration file of the same di-
rectory. The patches makefile.patch and kconfig.patch, which can be
found in appendix C, contain these changes.

The gumsense kernel module was written as an I2C “chip” driver. The
function gumsense init() gets called when the module is loaded. On line
163 of gumsense.c, this registers the Gumsense I2C driver and, on line
168, registers the local function gumsense power off to be called when the
power needs to be terminated.

The gumsense driver structure, defined on line 67 of gumsense.c, de-
scribes the “attach” and “detach” functions of the I2C chip driver. gumsense attach adapter()

initiates a scan of the bus for I2C clients that may be the Gumsense. When
a candidate is found, the Gumsense I2C identity command is issued by
gumsense power off(). If the correct identity bytes are received, then a
new gumsense data structure is created. This contains a pointer to the
i2c client structure, that will later be required to power down the de-
vice, and a list head structure, which allows a list of Gumsense boards to
be stored. This list of clients allows for more than one Gumsense board to
be on the same I2C bus (however, changes to addresses would need to be
made).

Chapter 3

Conclusions and Future Work

43

Chapter 3 Conclusions and Future Work 44

3.1 Evaluation

This project achieved most of what it set out to do. The performance of
the Gumsense development platform was enhanced and a programming en-
vironment suitable for the rapid implementation of algorithms was created.

The time allocated to the project was not sufficient to develop such algo-
rithms, as the change in Gumsense architecture took longer than initially
anticipated. In particular, the time required to redesign the PCB was far
greater than initially expected.

During the project, the project goals were re-evaluated because of an ini-
tially unknown factor; the Gumstix sleep current. After an analysis of
this factor, it was decided that the design should be changed to switch the
Gumstix fully off during inactive periods. This change allows energy to be
saved in WSN applications, where long periods of processor activity are
common.

Chapter 3 Conclusions and Future Work 45

3.2 Future Work

3.2.1 Hardware Development

Aside from the small set of PCB corrections that were detailed earlier, there
are improvements that could be made to the design to enhance functional-
ity. The addition of a method of measuring and logging the device power
usage (a feature of the LEAP platform [16]) may be useful for developing
“power-aware” algorithms. Furthermore, the addition of a set of jumpers,
or perhaps a DIP switch to the design would allow the selection of device
mode in the field.

The standby current of the Gumstix is mainly due to the DRAM refresh
current. If the DRAM was to be replaced with MRAM then the Gumstix
standby current would potentially be much less.

3.2.2 Software Development

Great energy savings could be achieved by reducing the Gumstix boot
time. A large segment of the boot time is due to the scanning of the
JFFS2 volume, all of which must be read before it is mounted. It should
be possible to develop a file-system that stores metadata on a separate
non-volatile memory that is capable of many more read-write cycles than
the Gumstix flash. This memory could be placed on the Gumsense. This
would completely eliminate the need to read the entire contents of the flash
memory at boot time, and therefore substantially reduce boot time.

Further reductions in boot time could potentially by achieved by modifying
the system boot process. Of course, the shutdown time should also be
optimised.

Bibliography

[1] GJ Pottie and WJ Kaiser. Wireless integrated network sensors. Com-
munications of the ACM, 43(5):51–58, 2000.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wire-
less sensor networks: a survery. Computer Networks, pages 393–422,
December 2001.

[3] D. Estrin. Wireless sensing systems: from eco-systems to human-
systems. A Campbell lecture given at the University of Southampton,
1st May 2007.

[4] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from
a sensor network expedition. First European Workshop on Wireless
Sensor Networks (EWSN04), January, 2004.

[5] B. Schott, M. Bajura, J. Czarnaski, J. Flidr, T. Tho, and L. Wang. A
modular power-aware microsensor with ¿1000X dynamic power range.
Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth
International Symposium on, pages 469–474, 2005.

[6] B.A. Warneke, M.D. Scott, B.S. Leibowitz, L. Zhou, C.L. Bellew, J.A.
Chediak, J.M. Kahn, B.E. Boser, and K.S.J. Pister. An Autonomous
16mm 3 Solar-Powered Node for Distributed Wireless Sensor Net-
works. Proceedings of Sensors 02, 2002.

[7] S. Roundy, P.K. Wright, and J. Rabaey. A study of low level vibrations
as a power source for wireless sensor nodes. Computer Communica-
tions, 26(11):1131–1144, 2003.

[8] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC pro-
tocol for wireless sensor networks. INFOCOM 2002. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, 3, 2002.

[9] S. Goel, A. Passarella, and T. Imielinski. Using buddies to live longer in
a boring world. Proceedings of the Fourth Annual IEEE International
Conference on Pervasive Computing and Communications Workshops,
2006.

47

BIBLIOGRAPHY 48

[10] A. Gupta, C. Gui, and P. Mohapatra. Exploiting Multi-Channel Clus-
tering for Power Efficiency in Sensor Networks. Communication Sys-
tem Software and Middleware, 2006. Comsware 2006. First Interna-
tional Conference on, pages 1–10, 2006.

[11] N.D. Georganas. A coverage-preserving node scheduling scheme for
large wireless sensor networks. Proceedings of the 1st ACM interna-
tional workshop on Wireless sensor networks and applications, pages
32–41, 2002.

[12] L. Krishnamachari, D. Estrin, and S. Wicker. The impact of data
aggregation in wireless sensor networks. Distributed Computing Sys-
tems Workshops, 2002. Proceedings. 22nd International Conference
on, pages 575–578, 2002.

[13] D. Petrovic, RC Shah, K. Ramchandran, and J. Rabaey. Data fun-
neling: routing with aggregation and compression for wireless sensor
networks. Sensor Network Protocols and Applications, 2003. Proceed-
ings of the First IEEE. 2003 IEEE International Workshop on, pages
156–162, 2003.

[14] K. Sohrabi, J. Gao, V. Ailawadhi, and GJ Pottie. Protocols for self-
organization of a wireless sensor network. Personal Communications,
IEEE [see also IEEE Wireless Communications], 7(5):16–27, 2000.

[15] M. Rahimi, R. Baer, O.I. Iroezi, J.C. Garcia, J. Warrior, and M. Sri-
vastava. Cyclops: in situ image sensing and interpretation in wireless
sensor networks. Proceedings of the 3rd international conference on
Embedded networked sensor systems, pages 192–204, 2005.

[16] D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and W.J. Kaiser. The
low power energy aware processing (LEAP) embedded networked sen-
sor system. Proceedings of the fifth international conference on Infor-
mation processing in sensor networks, pages 449–457, 2006.

[17] JL Hill and DE Culler. Mica: a wireless platform for deeply embedded
networks. Micro, IEEE, 22(6):12–24, 2002.

[18] R.D. King, K.E. Whelan, F.M. Jones, P.G.K. Reiser, C.H. Bryant, S.H.
Muggleton, and D.B. Kell. Functional genomic hypothesis generation
and experimentation by a robot scientist. Nature, 427:247–252, 2004.

[19] N. Matsumaru, F. Centler, K.P. Zauner, and P. Dittrich. Self-adaptive
Scouting—Autonomous Experimentation for Systems Biology. Appli-
cations of Evolutionary Computing, 3005:52–62.

[20] G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: a wireless
sensor network testbed. Information Processing in Sensor Networks,
2005. IPSN 2005. Fourth International Symposium on, pages 483–488,
2005.

BIBLIOGRAPHY 49

[21] K. Martinez, R. Ong, and J. Hart. Glacsweb: a sensor network for hos-
tile environments. Sensor and Ad Hoc Communications and Networks,
2004. IEEE SECON 2004. 2004 First Annual IEEE Communications
Society Conference on, pages 81–87, 2004.

[22] Gumstix - way small computing. http://www.gumstix.com/, 2007.
As read on 9th May 2007.

[23] Atmel Corporation. 8-bit AVR Microcontroller with 128K Bytes In-
Sytem Programmable Flash - ATmega103, February 2007.

[24] Gumstix Inc. Features of the gumstix basic mother-
board. http://docwiki.gumstix.org/Basix and connex#

Features of the gumstix basix motherboard. As read on 9th
May 2007.

[25] Linux v2.6.20 source code. http://www.kernel.org/. As read on 9th
May 2007.

[26] Intel. Intel PXA255 Processor Developer’s Manual, January 2004.

[27] Gumstix 60 pin connector layout. http://docwiki.gumstix.org/

Gumstix motherboard I/O. As read on 8th May 2007.

[28] Intel. Intel PXA255 Processor Electrical, Mechanical, and Thermal
Specification, February 2004.

[29] Micron Technology Inc. MT48LC64M4A2 Synchronous DRAM
Datasheet, 1999.

[30] Craig Hughes. http://article.gmane.org/gmane.linux.

distributions.gumstix.general/1569, February 2005.

[31] Bernard Blackham. http://article.gmane.org/gmane.linux.

distributions.gumstix.general/15119/match=boot+time, Au-
gust 2006.

[32] Microchip Technology Inc. PIC16F87XA Data Sheet, 2003.

[33] Atmel Corporation. ATtiny28L/V Datasheet, 2006.

[34] Texas Instruments Inc. MSP430x15x, MSP430x16x, MSP430x161x
Mixed Signal Microcontroller, October 2002.

[35] Philips Electronics. LPC2141/42/44/46/48 Product Data Sheet, Au-
gust 2006.

[36] Maxim Integrated Products. DS1337 I2C Serial Real-Time Clock,
2006.

[37] Cadsoft online: Home of the eagle layout editor. http://cadsoftusa.
com/, 2007. As read on 11th January 2007.

http://www.gumstix.com/
http://docwiki.gumstix.org/Basix_and_connex#Features_of_the_gumstix_basix_motherboard
http://docwiki.gumstix.org/Basix_and_connex#Features_of_the_gumstix_basix_motherboard
http://www.kernel.org/
http://docwiki.gumstix.org/Gumstix_motherboard_I/O
http://docwiki.gumstix.org/Gumstix_motherboard_I/O
http://article.gmane.org/gmane.linux.distributions.gumstix.general/1569
http://article.gmane.org/gmane.linux.distributions.gumstix.general/1569
http://article.gmane.org/gmane.linux.distributions.gumstix.general/15119/match=boot+time
http://article.gmane.org/gmane.linux.distributions.gumstix.general/15119/match=boot+time
http://cadsoftusa.com/
http://cadsoftusa.com/

BIBLIOGRAPHY 50

[38] Analog Devices Inc. AD623 Datasheet. Single Supply, Rail-to-Rail,
Low Cost Instrumentation Amplifier, 1999.

[39] Maxim Integrated Products. MAX8881 Datasheet. 12V, Ultra-Low-IQ,
Low-Dropout Linear Regulators with POK, March 2004.

[40] mspgcc - gcc toolchain for msp430. http://mspgcc.sf.net/, 2007.
As read on 11th January 2007.

[41] SBS Implementers Forum. System Management Bus (SMBus) Speci-
fication, August 2000.

[42] Texas Instruments Inc. MSP430x1xx Family User’s Guide, 2006.

[43] Gumstix Inc. Gumstix technical publications: Thumbstix schematics.
http://pubs.gumstix.org/boards/THUMBSTIX/PCB00021-R633/.
As viewed on 9th May 2007.

[44] USB Implementers Forum, Inc. Universal Serial Bus Specification, 2.0
edition, April 2007.

[45] A c library for embedded linux. http://www.uclibc.org/about.

html. As read on 9th May 2007.

[46] Linux Device Drivers, Third Edition. O’Reilly Media Inc., 2005.

http://mspgcc.sf.net/
http://pubs.gumstix.org/boards/THUMBSTIX/PCB00021-R633/
http://www.uclibc.org/about.html
http://www.uclibc.org/about.html

Appendix A

Gumsense Schematics

51

Appendix A Gumsense Schematics 52

F
ig

u
r
e

A
.1

:

Appendix A Gumsense Schematics 53

F
ig

u
r
e

A
.2

:

Appendix A Gumsense Schematics 54

F
ig

u
r
e

A
.3

:

Appendix A Gumsense Schematics 55

F
ig

u
r
e

A
.4

:

Appendix A Gumsense Schematics 56

Table A.1: Bill of materials for the new Gumsense design.

Part Number Description Quantity

DF12(3.0)-60DP-0.5V(86) Gumstix Connector 1
MSP430F169 Microcontroller 1
AD623 Instrumentation Amplifier 2
OPA2335D Dual Operational Amplifier 1

100 Ohm SM Trimmer 2
100K SM Trimmer 6
1M SM Trimmer 2

MAX4794EUS Current Limiting Analogue Switch 8
MAX8881EUT50-T Voltage Regulator 1
MAX8881EUT33-T Voltage Regulator 2
MAX1685EEE Switchmode Step-down converter 1

USB Connector 1
Power Jack 1
32 Khz Watch Crystal 1
Button Cell 1
Button Cell Holder 1
22uH Inductor 1

MBRS130LT3 Diode 1
BAT54C Dual Diode 1

2x4 Pin Header 2
10 Pin Header 1
8 Pin Header 2
6 Pin Header 3
4 Pin Header 3
5 Pin Header 1
3 Pin Header 3
100k 0603 Resistor 1
33k 0603 Resistor 1
1K 0603 Resistor 12
3k9 0603 Resistor 4
10K 0603 Resistor 4
4k7 0603 Resistor 2
1nF 0603 Capacitor 6
47nF 0603 Capacitor 2
4.7uF 0603 Capacitor 8
100n 0603 Capacitor 8
15p 0603 Capacitor 1
10n 0603 Capacitor 1
100u 1812 Capacitor 2
1uF 0603 Capacitor 4

Test

57

	Acknowledgements
	1 Introduction
	1.1 Previous Work
	1.2 Goals

	2 Technical Progress
	2.1 Gumstix Sleep
	2.2 New Gumsense Design
	2.3 MSP430 Development
	2.4 Assembly
	2.5 Gumstix Software
	2.6 Powerdown

	3 Conclusions and Future Work
	3.1 Evaluation
	3.2 Future Work

	Bibliography
	A Gumsense Schematics

